Image
Der Einstein-Elevator des HITEC (Hannover Institute of Technology) ist die Weiterentwicklung eines klassischen Fallturms, mit dem Experimente unter reduzierter Schwerkraft und Mikrogravitation durchgeführt werden können.
Foto: LUH/Christoph Lotz
Der Einstein-Elevator des HITEC (Hannover Institute of Technology) ist die Weiterentwicklung eines klassischen Fallturms, mit dem Experimente unter reduzierter Schwerkraft und Mikrogravitation durchgeführt werden können.

Laserschweißen

Laserschweißen im Weltraum bald keine Zukunftsmusik mehr?

Wissenschaftler des Laser Zentrum Hannover e.V. (LZH) untersuchen den Einfluss der Gravitation auf Laserstrahlschweißprozesse.

Um Raumstationen auszustatten, müssen momentan noch vollständig montierte Baugruppen in den Weltraum transportiert werden. Dies beansprucht Laderaum und führt zu hohen Treibstoffkosten. Eine Lösung für dieses Problem könnte das Laserstrahlschweißen sein: Mit Hilfe des Laserstrahlschweißens könnten Anbau- oder Ersatzteile direkt vor Ort aneinandergefügt werden. Und anstatt gesamte Baugruppen auszutauschen, könnten bestehende Ausstattungen flexibel erweitert, modifiziert oder repariert werden. Doch im Weltraum sind viele Voraussetzungen für das Laserstrahlschweißen anders als auf der Erde. Unter anderem sorgen Vakuumbedingungen, Strahlung, elektrische und magnetische Felder dafür, dass Materialien und Prozesse sich anders verhalten. Wie genau sich Gravitation auf metallische Schmelzbäder auswirkt, wollen die Forscher:innen im Einstein-Elevator der Leibniz Universität Hannover (LUH) untersuchen.

Einstein-Elevator simuliert Bedingungen auf der ISS

Konkret wollen sie unter anderem das Strömungsverhalten für das Laserstrahlschweißen artgleicher sowie artungleicher Verbindungen aus Aluminiumlegierungen und Stahlwerkstoffen untersuchen. Für die artungleichen Schweißnähte wollen die Wissenschaftler:innen zusätzlich das Durchmischungsverhalten der Werkstoffe in der Schmelze analysieren. Weiterhin soll der Einfluss der bei Mikrogravitation, was annähernd Schwerelosigkeit entspricht, stark reduzierten Konvektion auf das Schmelzbad sowie die resultierenden Fügeverbindungen untersucht werden. Der Einstein-Elevator des HITEC (Hannover Institute of Technology) ist die Weiterentwicklung eines klassischen Fallturms, mit dem Experimente unter reduzierter Schwerkraft und Mikrogravitation durchgeführt werden können. Die erreichbare Mikrogravitation liegt bei unter 10⁻⁶ g, die maximale Versuchsdauer beträgt 4 s. Der im Einstein-Elevator ohne Vakuum erreichbare Wert der Mikrogravitation liegt bei 10⁻⁴ g. Dieser Zustand entspricht beispielsweise den Bedingungen auf der Internationalen Raumstation ISS.

Schweißen von Bipolarplatten für Brennstoffzellen

Lava-X und Raylase beschließen Technologiepartnerschaft für gesteigerte Produktivität und reduzierten Ressourcenverbrauch beim Laserschweißen im Vakuum.
Artikel lesen
Image
Die LaVaCELL ist eine hocheffiziente Fertigungszelle mit modularer Automatisierungstechnik.

Messen

Lava-X auf der Lasys

Anbieter für Laserstrahlschweißens im Vakuum präsentierte seine Lösung auf der internationalen Fachmesse für Lasertechnologie.

    • Messen
Image
Auch das Upgrade einer vorhandenen Produktionsanlage mit Lava-Technologie ist möglich.

Messen

Laserstrahlschweißen im Vakuum

Lava-X präsentiert seine innovative und energiesparende Technologie auf der diesjährigen Sensor+Test.

    • Messen
Image
fraunhofer_trumpf_gruenerlaser.jpeg

Laserschweißen

Symposium: Die Rolle des Lasers bei der E-Mobilität

Auf dem 3. Lasersymposium Elektromobilität zeigte das Fraunhofer-Instituts ILT, wie laserbasierte Verfahren immer mehr Bereiche der E-Mobilität erobern.

    • Laserschweißen
Image
lava-x_drucksensoren_vakuum.jpeg

Laserschweißen

Die Vorteile von Vakuum in der Drucksensoren-Fertigung

Höhere Produktqualität bei weniger Energiebedarf: Ein neuartiges Vakuum-Schweißverfahren verspricht bei der Fertigung von Drucksensoren einige Vorteile.

    • Laserschweißen, Fügen + Verbinden